Pascal’s Triangle II In C,CPP,JAVA,PYTHON,C#,JS

Spread the love
Close-up of a computer screen displaying programming code in a dark environment.

Problem Statement: Pascal’s Triangle II

Given an integer rowIndex, return the rowIndex-th row of Pascal’s Triangle. The rowIndex is 0-based, so the first row is row 0.

For example:

  • Input: rowIndex = 3
  • Output: [1, 3, 3, 1]

Approach

  1. Understanding Pascal’s Triangle:
    • Each row is constructed using the previous row, where:
      • The first and last elements are always 1.
      • Any middle element triangle[r][c] is the sum of the two elements above it: triangle[r-1][c-1] + triangle[r-1][c].
  2. Efficient Calculation:
    • Optimal Solution: Rather than generating the entire triangle up to rowIndex, we can directly compute the required row using a simple iterative approach:
      • We start with a row initialized to [1].
      • We iteratively update this row using the properties of Pascal’s Triangle, keeping only the current row at each step.
  3. Mathematical Insight:
    • The elements of the row can be computed using the formula: C(r,c)=r!c!(r−c)!\text{C}(r, c) = \frac{r!}{c! (r – c)!}C(r,c)=c!(r−c)!r!​ However, instead of calculating the factorials directly, we can compute each element iteratively using: C(r,c)=C(r,c−1)×r−c+1c\text{C}(r, c) = \text{C}(r, c – 1) \times \frac{r – c + 1}{c}C(r,c)=C(r,c−1)×cr−c+1​ This avoids the computational overhead of calculating factorials.
  4. Time Complexity:
    • O(n) where n is the rowIndex because we only iterate once to generate the required row.
  5. Space Complexity:
    • O(n) because we store only the current row.

Code Implementations


C:

#include <stdio.h>
#include <stdlib.h>

void generateRow(int rowIndex) {
int *row = (int *)malloc((rowIndex + 1) * sizeof(int));

row[0] = 1; // First element is always 1

for (int i = 1; i <= rowIndex; i++) {
// Update the row in reverse to avoid overwriting previous values
for (int j = i; j > 0; j--) {
row[j] = row[j] + row[j - 1];
}
}

// Print the row
for (int i = 0; i <= rowIndex; i++) {
printf("%d ", row[i]);
}
printf("\n");

free(row);
}

int main() {
int rowIndex = 3;
generateRow(rowIndex); // Output: 1 3 3 1
return 0;
}

C++:

#include <iostream>
#include <vector>
using namespace std;

vector<int> getRow(int rowIndex) {
vector<int> row(rowIndex + 1, 1); // Initialize the row with 1's

for (int i = 1; i <= rowIndex; i++) {
// Update the row in reverse order to prevent overwriting
for (int j = i - 1; j > 0; j--) {
row[j] += row[j - 1];
}
}

return row;
}

int main() {
int rowIndex = 3;
vector<int> row = getRow(rowIndex);

for (int num : row) {
cout << num << " ";
}
cout << endl; // Output: 1 3 3 1
return 0;
}

Java:

import java.util.ArrayList;
import java.util.List;

public class PascalsTriangleII {
public static List<Integer> getRow(int rowIndex) {
List<Integer> row = new ArrayList<>();
row.add(1); // First element is always 1

for (int i = 1; i <= rowIndex; i++) {
// Update the row in reverse order to avoid overwriting
for (int j = i - 1; j > 0; j--) {
row.set(j, row.get(j) + row.get(j - 1));
}
row.add(1); // Add the last element of the row (which is always 1)
}

return row;
}

public static void main(String[] args) {
int rowIndex = 3;
List<Integer> row = getRow(rowIndex);

for (int num : row) {
System.out.print(num + " ");
}
System.out.println(); // Output: 1 3 3 1
}
}

Python:

def getRow(rowIndex):
row = [1] # First element is always 1

for i in range(1, rowIndex + 1):
# Update the row in reverse order to avoid overwriting
for j in range(i - 1, 0, -1):
row[j] += row[j - 1]
row.append(1) # Add the last element of the row (which is always 1)

return row

# Example usage
rowIndex = 3
print(getRow(rowIndex)) # Output: [1, 3, 3, 1]

C#:

using System;
using System.Collections.Generic;

class PascalsTriangleII {
public static List<int> GetRow(int rowIndex) {
var row = new List<int> { 1 }; // First element is always 1

for (int i = 1; i <= rowIndex; i++) {
// Update the row in reverse order to prevent overwriting
for (int j = i - 1; j > 0; j--) {
row[j] += row[j - 1];
}
row.Add(1); // Add the last element of the row (which is always 1)
}

return row;
}

static void Main() {
int rowIndex = 3;
var row = GetRow(rowIndex);

foreach (var num in row) {
Console.Write(num + " ");
}
Console.WriteLine(); // Output: 1 3 3 1
}
}

JavaScript:

function getRow(rowIndex) {
let row = [1]; // First element is always 1

for (let i = 1; i <= rowIndex; i++) {
// Update the row in reverse order to avoid overwriting
for (let j = i - 1; j > 0; j--) {
row[j] += row[j - 1];
}
row.push(1); // Add the last element of the row (which is always 1)
}

return row;
}

// Example usage
let rowIndex = 3;
console.log(getRow(rowIndex)); // Output: [1, 3, 3, 1]

Explanation:

For rowIndex = 3, the steps to generate the row [1, 3, 3, 1] are:

  1. Start with an initial row: [1].
  2. For i = 1, update the row: [1, 1] (last element is 1).
  3. For i = 2, update the row: [1, 2, 1].
  4. For i = 3, update the row: [1, 3, 3, 1].

Time Complexity:

  • O(n), where n is the row index (rowIndex), because we only need to loop through n iterations to compute the required row.

Space Complexity:

  • O(n), where n is the row index, because we only store the current row.

Summary:

This solution computes the rowIndex-th row of Pascal’s Triangle directly using an efficient iterative approach, making it more space- and time-efficient than generating the entire triangle.