The Trapping Rain Water problem asks us to compute how much water can be trapped between bars of varying heights after it rains. The problem typically provides an array where each element represents the height of a bar, and we need to calculate how much water can be stored between these bars. Problem Statement: Given an array height[] representing the height of bars in a histogram, the task is to compute the amount of water that can be trapped between the bars after raining. Example: Example 1: Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]Output: 6Explanation: The total water trapped is 6 units. Example 2: Input: height = [4,2,0,3,2,5]Output: 9 Approach: To solve this problem efficiently, we can use the two-pointer technique combined with precomputed maximum heights. Here’s a breakdown of the approach: Time Complexity: Code Implementations: 1. C: #include <stdio.h>int trap(int* height, int heightSize) { if (heightSize == 0) return 0; int left = 0, right = heightSize – 1; int left_max = 0, right_max = 0; int water_trapped = 0; while (left <= right) { if (height[left] <= height[right]) { if (height[left] >= left_max) { left_max = height[left]; } else { water_trapped += left_max – height[left]; } left++; } else { if (height[right] >= right_max) { right_max = height[right]; } else { water_trapped += right_max – height[right]; } right–; } } return water_trapped;}int main() { int height[] = {0,1,0,2,1,0,1,3,2,1,2,1}; int size = sizeof(height) / sizeof(height[0]); printf(“Trapped Water: %d\n”, trap(height, size)); return 0;} 2. C++: #include <iostream>#include <vector>using namespace std;int trap(vector<int>& height) { int n = height.size(); if (n == 0) return 0; int left = 0, right = n – 1; int left_max = 0, right_max = 0; int water_trapped = 0; while (left <= right) { if (height[left] <= height[right]) { if (height[left] >= left_max) { left_max = height[left]; } else { water_trapped += left_max – height[left]; } left++; } else { if (height[right] >= right_max) { right_max = height[right]; } else { water_trapped += right_max – height[right]; } right–; } } return water_trapped;}int main() { vector<int> height = {0,1,0,2,1,0,1,3,2,1,2,1}; cout << “Trapped Water: ” << trap(height) << endl; return 0;} 3. Java: public class Solution { public int trap(int[] height) { int n = height.length; if (n == 0) return 0; int left = 0, right = n – 1; int leftMax = 0, rightMax = 0; int waterTrapped = 0; while (left <= right) { if (height[left] <= height[right]) { if (height[left] >= leftMax) { leftMax = height[left]; } else { waterTrapped += leftMax – height[left]; } left++; } else { if (height[right] >= rightMax) { rightMax = height[right]; } else { waterTrapped += rightMax – height[right]; } right–; } } return waterTrapped; } public static void main(String[] args) { Solution solution = new Solution(); int[] height = {0,1,0,2,1,0,1,3,2,1,2,1}; System.out.println(“Trapped Water: ” + solution.trap(height)); }} 4. Python: def trap(height): if not height: return 0 left, right = 0, len(height) – 1 left_max, right_max = 0, 0 water_trapped = 0 while left <= right: if height[left] <= height[right]: if height[left] >= left_max: left_max = height[left] else: water_trapped += left_max – height[left] left += 1 else: if height[right] >= right_max: right_max = height[right] else: water_trapped += right_max – height[right] right -= 1 return water_trapped# Example usageheight = [0,1,0,2,1,0,1,3,2,1,2,1]print(f”Trapped Water: {trap(height)}”) 5. C#: using System;public class Solution { public int Trap(int[] height) { int n = height.Length; if (n == 0) return 0; int left = 0, right = n – 1; int leftMax = 0, rightMax = 0; int waterTrapped = 0; while (left <= right) { if (height[left] <= height[right]) { if (height[left] >= leftMax) { leftMax = height[left]; } else { waterTrapped += leftMax – height[left]; } left++; } else { if (height[right] >= rightMax) { rightMax = height[right]; } else { waterTrapped += rightMax – height[right]; } right–; } } return waterTrapped; } public static void Main(string[] args) { Solution solution = new Solution(); int[] height = {0,1,0,2,1,0,1,3,2,1,2,1}; Console.WriteLine(“Trapped Water: ” + solution.Trap(height)); }} 6. JavaScript: var trap = function(height) { let n = height.length; if (n === 0) return 0; let left = 0, right = n – 1; let leftMax = 0, rightMax = 0; let waterTrapped = 0; while (left <= right) { if (height[left] <= height[right]) { if (height[left] >= leftMax) { leftMax = height[left]; } else { waterTrapped += leftMax – height[left]; } left++; } else { if (height[right] >= rightMax) { rightMax = height[right]; } else { waterTrapped += rightMax – height[right]; } right–; } } return waterTrapped;};// Example usageconst height = [0,1,0,2,1,0,1,3,2,1,2,1];console.log(“Trapped Water: “, trap(height)); Summary: