Problem Statement: Generate Parentheses Given an integer n, generate all combinations of well-formed parentheses of length 2n. A valid combination of parentheses is one where each opening parenthesis ( is properly closed with a closing parenthesis ). Example: Input: n = 3 Output: [“((()))”, “(()())”, “(())()”, “()(())”, “()()()”] Input: n = 1 Output: [“()”] Approach: The problem can be approached using backtracking, which allows us to explore all possible combinations of parentheses while ensuring that at each step, the number of opening parentheses ( is never less than the number of closing parentheses ). Time Complexity: Code Implementation C Code: #include <stdio.h>#include <stdlib.h>#include <string.h>void generateParenthesisRecursive(int n, int open_count, int close_count, char* current, char** result, int* returnSize) { if (open_count == n && close_count == n) { result[*returnSize] = (char*)malloc(strlen(current) + 1); strcpy(result[*returnSize], current); (*returnSize)++; return; } if (open_count < n) { current[open_count + close_count] = ‘(‘; generateParenthesisRecursive(n, open_count + 1, close_count, current, result, returnSize); } if (close_count < open_count) { current[open_count + close_count] = ‘)’; generateParenthesisRecursive(n, open_count, close_count + 1, current, result, returnSize); }}char** generateParenthesis(int n, int* returnSize) { char** result = (char**)malloc(100 * sizeof(char*)); // Assumption: max result size char* current = (char*)malloc(2 * n + 1); *returnSize = 0; generateParenthesisRecursive(n, 0, 0, current, result, returnSize); free(current); return result;}int main() { int returnSize; char** result = generateParenthesis(3, &returnSize); for (int i = 0; i < returnSize; i++) { printf(“%s\n”, result[i]); free(result[i]); } free(result); return 0;} C++ Code: #include <iostream>#include <vector>#include <string>using namespace std;class Solution {public: vector<string> generateParenthesis(int n) { vector<string> result; backtrack(n, 0, 0, “”, result); return result; }private: void backtrack(int n, int open_count, int close_count, string current, vector<string>& result) { if (open_count == n && close_count == n) { result.push_back(current); return; } if (open_count < n) { backtrack(n, open_count + 1, close_count, current + “(“, result); } if (close_count < open_count) { backtrack(n, open_count, close_count + 1, current + “)”, result); } }};int main() { Solution solution; vector<string> result = solution.generateParenthesis(3); for (const string& combination : result) { cout << combination << endl; } return 0;} Java Code: import java.util.ArrayList;import java.util.List;public class Solution { public List<String> generateParenthesis(int n) { List<String> result = new ArrayList<>(); backtrack(n, 0, 0, “”, result); return result; } private void backtrack(int n, int open_count, int close_count, String current, List<String> result) { if (open_count == n && close_count == n) { result.add(current); return; } if (open_count < n) { backtrack(n, open_count + 1, close_count, current + “(“, result); } if (close_count < open_count) { backtrack(n, open_count, close_count + 1, current + “)”, result); } } public static void main(String[] args) { Solution solution = new Solution(); List<String> result = solution.generateParenthesis(3); for (String combination : result) { System.out.println(combination); } }} Python Code: class Solution: def generateParenthesis(self, n: int): result = [] self._backtrack(n, 0, 0, “”, result) return result def _backtrack(self, n: int, open_count: int, close_count: int, current: str, result: list): if open_count == n and close_count == n: result.append(current) return if open_count < n: self._backtrack(n, open_count + 1, close_count, current + “(“, result) if close_count < open_count: self._backtrack(n, open_count, close_count + 1, current + “)”, result)# Example usagesolution = Solution()print(solution.generateParenthesis(3)) # Output: [‘((()))’, ‘(()())’, ‘(())()’, ‘()(())’, ‘()()()’] C# Code: using System;using System.Collections.Generic;public class Solution { public IList<string> GenerateParenthesis(int n) { List<string> result = new List<string>(); Backtrack(n, 0, 0, “”, result); return result; } private void Backtrack(int n, int open_count, int close_count, string current, List<string> result) { if (open_count == n && close_count == n) { result.Add(current); return; } if (open_count < n) { Backtrack(n, open_count + 1, close_count, current + “(“, result); } if (close_count < open_count) { Backtrack(n, open_count, close_count + 1, current + “)”, result); } } public static void Main() { Solution solution = new Solution(); var result = solution.GenerateParenthesis(3); foreach (var combination in result) { Console.WriteLine(combination); } }} JavaScript Code: javascriptCopy codevar generateParenthesis = function(n) { const result = []; function backtrack(current, open_count, close_count) { if (open_count === n && close_count === n) { result.push(current); return; } if (open_count < n) { backtrack(current + “(“, open_count + 1, close_count); } if (close_count < open_count) { backtrack(current + “)”, open_count, close_count + 1); } } backtrack(“”, 0, 0); return result; }; console.log(generateParenthesis(3)); // Output: [“((()))”, “(()())”, “(())()”, “()(())”, “()()()”] Explanation: Time Complexity: Summary: This problem can be efficiently solved using backtracking, where we explore all possible combinations of parentheses while ensuring that each combination is valid. This method generates all valid parentheses combinations for a given n in an optimal way.